Measuring meaningful information in images: algorithmic specified complexity

نویسندگان

  • Winston J. Ewert
  • William A. Dembski
  • Robert J. Marks
چکیده

Both Shannon and Kolmogorov–Chaitin–Solomonoff (KCS) information models fail to measure meaningful information in images. Pictures of a cow and correlated noise can both have the same Shannon and KCS information, but only the image of the cow has meaning. The application of ‘algorithmic specified complexity’ (ASC) to the problem of distinguishing random images, simple images and content-filled images is explored. ASC is a model for measuring meaning using conditional KCS complexity. The ASC of various images given a context of a library of related images is calculated. The ‘portable network graphic’ (PNG) file format’s compression is used to account for typical redundancies found in images. Images which containing content can thereby be distinguished from those containing simply redundancies, meaningless or random noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division

In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...

متن کامل

ar X iv : c s / 01 11 05 3 v 2 [ cs . C C ] 2 7 A ug 2 00 2 Meaningful Information

The information in an individual finite object (like a binary string) is commonly measured by its Kolmogorov complexity. One can divide that information into two parts: the information accounting for the useful regularity present in the object and the information accounting for the remaining accidental information. There can be several ways (model classes) in which the regularity is expressed. ...

متن کامل

Probabilistic Sufficiency and Algorithmic Sufficiency from the point of view of Information Theory

‎Given the importance of Markov chains in information theory‎, ‎the definition of conditional probability for these random processes can also be defined in terms of mutual information‎. ‎In this paper‎, ‎the relationship between the concept of sufficiency and Markov chains from the perspective of information theory and the relationship between probabilistic sufficiency and algorithmic sufficien...

متن کامل

An Improved Algorithmic Method for Software Development Effort Estimation

Accurate estimating is one of the most important activities in the field of software project management. Different aspects of software projects must be estimated among which time and effort are of significant importance to efficient project planning. Due to complexity of software projects and lack of information at the early stages of project, reliable effort estimation is a challenging issue. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Computer Vision

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015